JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M.Tech II - Semester Examinations, March 2011
 CODING THEORY AND TECHNIQUES

(COMMON TO DIGITAL ELECTRONICS \& COMMUNICATION SYSTEMS, COMMUNICATION SYSTEMS, ELECTRONICS \& COMMUNICATION, WIRELESS \& MOBILE COMMUNICATIONS)

Time: 3hours
Max. Marks: 60

Answer any five questions All questions carry equal marks

1.a) Plot Binary entropy function and write its equation.
b) Let X denote a random variable, and a, b denote arbitrary constants. If X is discrete, how are the entropies $\mathrm{H}(\mathrm{ax})$ and $\mathrm{H}(\mathrm{x}+\mathrm{b})$ related to $\mathrm{H}(\mathrm{x})$.
c) What are the various types of errors?
2.a) Prove that (n, k) linear block code is capable of correcting 2^{n-k} error patterns.
b) Draw the block diagram of general decoder for a linear block code and explain it.
c) Show that the minimum distance $\mathrm{d}_{\text {min }}$ of an (n, k) linear code satisfies the following inequality

$$
\begin{equation*}
d_{\min } \leq \frac{n \cdot 2^{k-1}}{2^{k}-1} \tag{12}
\end{equation*}
$$

3.a) Draw the encoder circuit for the $(7,4)$ cyclic code generated by $g(x)=1+x+x^{3}$.
b) Explain how syndrome is computed for cyclic codes and from this how the error is detected.
4.a) Draw the circuit diagram for error-tapping decoder for the $(15,7)$ cyclic code generated by $g(n)=1+x^{4}+x^{6}+x^{7}+x^{8}$ and explain it.
b) Write the error correcting procedure for BCH codes.
5.a) Draw the block diagram of general type-II one step majority-logic decoder and explain it.
b) Determine the weight enumerator for the entenderd Hamming code of length 2^{m}.
6.a) Prove that the number of parity-check digits of an l-burst error correcting code must be at least 2 l.
b) Explain the error correction process of single Burst error connecting codes.

Contd.... 2

::2::

7. a) Consider the $(3,1,2)$ convolutional code with
$g^{(1)}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$
$g^{(2)}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$
$g^{(3)}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
i) Draw the encoder block diagram
ii) Find the generator matrix.
iii) Find code word corresponding to the information sequence $u=\left(\begin{array}{lll}1 & 1 & 1\end{array} 01\right.$ 1)
b) Explain the decoding of convolutional codes based on maximum likelihood criteria.
8. Write a short note on:
a) BCH Bounds.
b) Iterative algorithm.
